SYNTHESIS OF BIS-OXA-PROSTAGLANDINS ${ }^{1}$
I. T. Harrison* and V. R. Fletcher
Syntex Research, Stanford Industrial Park
Palo Alto, California 94304

(Received in USA 23 May 1974; received in OK for publication 24 June 1974)

The oxaprostaglandin analog (la) ${ }^{2}$, in which an oxygen heteroatom replaces a methylene group in the side chain of the natural substance (1b), has interesting biological properties. We describe here the preparation of the prostaglandin analogs (2a) ${ }^{3}$ and (2b) in which oxygen heteroatoms replace hydroxymethine groups of the cyclopentane ring.

(1) $a, x=0$
b, $X=\mathrm{CH}_{2}$

(2) $a, X=H, H$
b, $X=0$

Hydroxylation ${ }^{4}$ of the trans-olefinic ester (3) ${ }^{5}$ with osmium tetroxidebarium chlorate in aqueous tetrahydrofuran gave the diol (4) [68\%; m.p. 37-38 ;

(3)

(4)

(5)
(6)
a, $R=H, H$
$b, R=0$

(7)
(8)

(9)
m / e 173, $\left.338\left(\mathrm{M}^{+}\right)\right]^{6}$, which was converted to the cyclic acetal (5a) [81\%; oil; $\mathrm{m} / \mathrm{e} 291$, $350\left(\mathrm{M}^{+}\right)$] by heating under reflux (water separator) with paraformaldehyde in benzene containing perchloric acid. The benzyl group of the ester (5a) was hydrogenolyzed (Pd-C, methanol) and the resulting acid reduced ${ }^{7}$ by conversion to the mixed ethyl carbonic anhydride (ethyl chloroformate, triethylamine) and treatment with sodium borohydride forming the alcohol (6a) [71\%; oil; $\mathrm{m} / \mathrm{e} 215\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{OH}\right)$. Oxidation ${ }^{8}$ of (6a) [dicyclohexylcarbodiimide, dichloroacetic acid, dimethylsulfoxide) gave the aldehyde hydrate (7a) [66\%; oil; $u_{\max }$ $3310(\mathrm{OH}), 1715 \mathrm{~cm}^{-1}$ (COOMe)]. Construction of the remaining side chain from (7a) via the enone (Ba) [oil; $\nu_{\max } 1730,1670,1630 \mathrm{~cm}^{-1}$] followed well established procedures ${ }^{9}$ forming a mixture of the 15-epimers (9a) [oils; m/e 271, 342 $\left(M^{+}\right)$] which were separated by column chromatography on silica gel. Hydrolysis of the esters (9a) with sodium hydroxide in 80% methanol gave the required $15 \alpha-$ hydroxy-9,11-bisoxaprost-13-enoic acid (2a) and the 15β-epimer [10\% each from (7a); gums; $v_{\max } 3290,1700 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{e} 170,209,239,280,310\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right) \mathrm{J}$.

The cyclic carbonate (5b) [oil; $\nu_{\max } 1805$ (carbonate), $1730 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{e} 258$, 332, $364\left(\mathrm{M}^{+}\right)$] was prepared by reaction of the diol (4) with phosgene (benzene solution) in tetrahydrofuran containing pyridine. Reactions analogous to those described above converted (5b) to the alcohol (6b) [oil; m/e 229, $\left.260\left(M^{+}\right)\right]$, the aldehyde hydrate (7b) [oil; $\nu_{\max } 3320,1795,1730 \mathrm{~cm}^{-1}$], the enone (8 b) [oil; $\nu_{\max } 1795,1730,1675,1635 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{e} 298,322$ ($\mathrm{M}-\mathrm{CH}_{3} \mathrm{OH}$)] and an inseparable mixture of the 15α and 15β-epimers (9b) [oil; $\nu_{\max } 3350,1790,1730 \mathrm{~cm}^{-1}$; $\mathrm{m} / \mathrm{e} 253$, $285\left(\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{11}\right)$]. Hydrolysis ${ }^{10}$ of the esters (9b) with yeast gave $15(\alpha+\beta)$-hydroxy-10-0xo-9,11-bisoxaprost-13-enoic acid (2b) [12\% from (4); gum; $\nu_{\max } 3320,1785,1705 \mathrm{~cm}^{-1}, \mathrm{~m} / \mathrm{e} 253,271\left(\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{11}\right)$.

Compounds (2a, 15α and 15β) and (2b) showed weak activity (ca. 0.005 x PGE_{2}) in the gerbil colon smooth muscle contraction assay ${ }^{11}$.

REFERENCES AND FOOTNOTES

1. Contribution No. 439 from the Syntex Institute of Organic Chemistry and No. 34 in the series Studies in Prostaglandins.
2. J. Fried, M. M. Mehra and W. L. Kao, J. Amer. Chem. Soc., 87, 5670 (1965).
3. Synthetic products are racemic, only one enantiomer is shown in the diagrams.
4. L. Bláha, J. Weichet, J. Z̆váček, S. Smolík and B. Kaká̌, Coll. Czech. Chem. Comm., 25, 237.(1960).
5. I. T. Harrison, R. Grayshan, T. Williams, A. Semenovski and J. H. Fried, Tetrahedron Letters, 5151 (1972).
6. N.m.r. spectra of all compounds were consistent with the assigned structures. I.r. spectra refer to liquid films.
7. K. Ishizumi, K. Koga and S. Yamada, Chem. Pharm. Buli., 16, 492 (1968).
8. K. E. Pfitzner and J. G. Moffatt, J. Amer. Chem. Soc., 87, 5670 (1965).
9. E. J. Corey, N. M. Weinshenker, T. K. Schaaf and W. Huber, J. Amer. Chem. Soc. ${ }^{\text {91, }} 5675$ (1969).
10. C. J. Sih, P. Price, R. Soood, R. G. Salomon, G. Peruzzotti and M. Casey, J. Amer. Chem. Soc., 94, 3643 (1972).
11. We thank W. Rooks and S. Jubb for this assay.
