SYNTHESIS OF BIS-OXA-PROSTAGLANDINS¹ I. T. Harrison* and V. R. Fletcher Syntex Research, Stanford Industrial Park Palo Alto, California 94304

(Received in USA 23 May 1974; received in UK for publication 24 June 1974)

The oxaprostaglandin analog $(1a)^2$, in which an oxygen heteroatom replaces a methylene group in the side chain of the natural substance (1b), has interesting biological properties. We describe here the preparation of the prostaglandin analogs $(2a)^3$ and (2b) in which oxygen heteroatoms replace hydroxymethine groups of the cyclopentane ring.

Hydroxylation⁴ of the trans-olefinic ester (3)⁵ with osmium tetroxidebarium chlorate in aqueous tetrahydrofuran gave the diol (4) [68%; m.p. $37-38^{\circ}$;

m/e 173, 338 (M^+)]⁶, which was converted to the cyclic acetal (5a) [81%; oil; m/e 291, 350 (M^+)] by heating under reflux (water separator) with paraformaldehyde in benzene containing perchloric acid. The benzyl group of the ester (5a) was hydrogenolyzed (Pd-C, methanol) and the resulting acid reduced⁷ by conversion to the mixed ethyl carbonic anhydride (ethyl chloroformate, triethylamine) and treatment with sodium borohydride forming the alcohol (6a) [71%; oil; m/e 215 (M-CH₂OH). Oxidation⁸ of (6a) [dicyclohexylcarbodiimide, dichloroacetic acid, dimethylsulfoxide) gave the aldehyde hydrate (7a) [66%; oil; v_{max} 3310 (OH), 1715 cm⁻¹ (COOMe)]. Construction of the remaining side chain from (7a) via the enone (8a) [oil; v_{max} 1730, 1670, 1630 cm⁻¹] followed well established procedures⁹ forming a mixture of the 15-epimers (9a) [oils; m/e 271, 342 (M⁺)] which were separated by column chromatography on silica gel. Hydrolysis of the esters (9a) with sodium hydroxide in 80% methanol gave the required 15αhydroxy-9,11-bisoxaprost-13-enoic acid (2a) and the 15β-epimer [10% each from (7a); gums; v_{max} 3290, 1700 cm⁻¹; m/e 170, 209, 239, 280, 310 (M-H₂O)].

The cyclic carbonate (5b) [oil; v_{max} 1805 (carbonate), 1730 cm⁻¹; m/e 258, 332, 364 (M⁺)] was prepared by reaction of the diol (4) with phosgene (benzene solution) in tetrahydrofuran containing pyridine. Reactions analogous to those described above converted (5b) to the alcohol (6b) [oil; m/e 229, 260 (M⁺)], the aldehyde hydrate (7b) [oil; v_{max} 3320, 1795, 1730 cm⁻¹], the enone (8b) [oil; v_{max} 1795, 1730, 1675, 1635 cm⁻¹; m/e 298, 322 (M-CH₃OH)] and an inseparable mixture of the 15 α and 15 β -epimers (9b) [oil; v_{max} 3350, 1790, 1730 cm⁻¹; m/e 253, 285 (M-C₅H₁₁)]. Hydrolysis¹⁰ of the esters (9b) with yeast gave 15(α + β)-hydroxy-10-oxo-9,11-bisoxaprost-13-enoic acid (2b) [12% from (4); gum; v_{max} 3320, 1785, 1705 cm⁻¹, m/e 253, 271 (M-C₅H₁₁).

Compounds (2a, 15 α and 15 β) and (2b) showed weak activity (ca. 0.005 x PGE₂) in the gerbil colon smooth muscle contraction assay¹¹.

REFERENCES AND FOOTNOTES

 Contribution No. 439 from the Syntex Institute of Organic Chemistry and No. 34 in the series Studies in Prostaglandins.

- 2. J. Fried, M. M. Mehra and W. L. Kao, <u>J. Amer. Chem. Soc</u>., <u>87</u>, 5670 (1965).
- 3. Synthetic products are racemic, only one enantiomer is shown in the diagrams.
- L. Bláha, J. Weichet, J. Žváček, S. Šmolík and B. Kakáč, <u>Coll. Czech. Chem</u>. Comm., 25, 237 (1960).
- 5. I. T. Harrison, R. Grayshan, T. Williams, A. Semenovski and J. H. Fried, <u>Tetrahedron Letters</u>, 5151 (1972).
- N.m.r. spectra of all compounds were consistent with the assigned structures. I.r. spectra refer to liquid films.
- 7. K. Ishizumi, K. Koga and S. Yamada, Chem. Pharm. Bull., 16, 492 (1968).
- 8. K. E. Pfitzner and J. G. Moffatt, J. Amer. Chem. Soc., 87, 5670 (1965).
- E. J. Corey, N. M. Weinshenker, T. K. Schaaf and W. Huber, <u>J. Amer. Chem</u>. Soc., <u>91</u>, 5675 (1969).
- C. J. Sih, P. Price, R. Soood, R. G. Salomon, G. Peruzzotti and M. Casey, J. Amer. Chem. Soc., <u>94</u>, 3643 (1972).
- 11. We thank W. Rooks and S. Jubb for this assay.